Expansion of the mutually exclusive spliced exome in Drosophila.

نویسندگان

  • Klas Hatje
  • Martin Kollmar
چکیده

Mutually exclusive splicing is an important mechanism in a wide range of eukaryotic branches to expand proteome diversity, but the extent of its distribution within a single species and its evolutionary conservation is unknown. Here we present a genome-wide analysis of mutually exclusive spliced exons (MXEs) in Drosophila melanogaster at unprecedented depth. Most of the new MXE candidates are supported by evolutionary conservation, transcriptome data analysis and identification of competing RNA secondary structural elements. The enrichment of the genes with MXEs in transmembrane transporters and ion channel activity is consistent with findings in humans, although the MXEs appeared independently and in non-homologous genes, supporting the idea of a universal benefit of adapting ion channel and receptor properties by tandem exon duplications. The comparison of the mutually exclusive spliced exomes within the Drosophila clade shows high numbers of MXE gain and loss events, suggesting a role of these processes in speciation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Competing RNA secondary structures are required for mutually exclusive splicing of the Dscam exon 6 cluster.

Alternative splicing of eukaryotic pre-mRNAs is an important mechanism for generating proteome diversity and regulating gene expression. The Drosophila melanogaster Down Syndrome Cell Adhesion Molecule (Dscam) gene is an extreme example of mutually exclusive splicing. Dscam contains 95 alternatively spliced exons that potentially encode 38,016 distinct mRNA and protein isoforms. We previously i...

متن کامل

The landscape of human mutually exclusive splicing

Mutually exclusive splicing of exons is a mechanism of functional gene and protein diversification with pivotal roles in organismal development and diseases such as Timothy syndrome, cardiomyopathy and cancer in humans. In order to obtain a first genomewide estimate of the extent and biological role of mutually exclusive splicing in humans, we predicted and subsequently validated mutually exclu...

متن کامل

Evolution of Exon-Intron Structure and Alternative Splicing

Comparative analysis of alternative splicing of orthologous genes from fruit flies (Drosophila melanogaster and Drosophila pseudoobscura) and mosquito (Anopheles gambiae) demonstrated that both in the fruit fly genes and in fruit fly-mosquito comparisons, constitutive exons and splicing sites are more conserved than alternative ones. While >97% of constitutive D. melanogaster exons are conserve...

متن کامل

Npgrj_nsmb_1339 1..7

The Down syndrome cell adhesion molecule (Dscam) gene has essential roles in neural wiring and pathogen recognition in Drosophila melanogaster. Dscam encodes 38,016 distinct isoforms via extensive alternative splicing. The 95 alternative exons in Dscam are organized into clusters that are spliced in a mutually exclusive manner. The exon 6 cluster contains 48 variable exons and uses a complex sy...

متن کامل

The iStem, a long-range RNA secondary structure element required for efficient exon inclusion in the Drosophila Dscam pre-mRNA.

The Drosophila Dscam gene encodes 38,016 different proteins, due to alternative splicing of 95 of its 115 exons, that function in axon guidance and innate immunity. The alternative exons are organized into four clusters, and the exons within each cluster are spliced in a mutually exclusive manner. Here we describe an evolutionarily conserved RNA secondary structure we call the Inclusion Stem (i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature communications

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2013